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e = 2.718 

I u a . 
--- For sufiicrentli irie:$ I; the quantity qo is dependent 

I 
i_ 

\ on the thickness, and in the case of the effect of a ring load- 
ing on an infinite or semi-infinit; shell will equal, respec- 

Fig. 3 
tively, v0 = 0.38 and qo = 0.18, according to calculations 
utilizing (4.5) and (5.5). 

When a system of moments distributed uniformly over the endface acts, the calcula- 
tions yield C/O = 0.21 according to (6.1). 
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It is shown that if the initial state of stress of a body.is described by linear elasticity 
theory, then an energy criterion for neutral equilibrium can be formulated directly in 

terms of the external loading and the governing bifurcation of the displacements. To 
do this, besides the fundamental first order displacements, additional second order dis- 
placements on which external potential forces perform work during buckling, are intro- 
duced to describe the deflected equilibrium position of the body. These additional quad- 
ratic displacements are expressed in terms of the first order displacements. It therefore 
turns out that the stability problem of an elastic body can be solved without a prelimi- 
nary determination of its initial state of stress. The result obtained can be considered as 
the foundation and extension of the energy-stability criterion in the form of S. P. Timo- 
shenko. 

The energy stability criterion which does not require the initial stress determination 
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is usually preferable when the initial state of stress is not uniform. Such a means of solu- 
tion was utilized in [l] in examining the stability of plates. 

1. Let us refer an elastic body of volume Y to a rectangular z, Y, z coordinate sys- 
tem; let pi, p”,, p,” and i,‘, Fvo, Fzo, respectively, denote the components of the sur- 

face and volume potential ldadings acting on the body. It is assumed that the initial 
stress-strain state of the body is described by equations of linear elasticity theory, i. e. 
the initial strains e” are expressed linearly in terms of the initial displacements IL”, u”, w” 

(1.‘) 

Here and henceforth the symbol (zYz, UVW) denotes cyclic commutation of the men- 
tioned letters. 

The initial stresses are related to the initial strains by Hooke’s law 

where E and p are the elastic modulus and Poisson’s coefficient. 

Linear equilibrium equations are valid 

PY4 (1.3) 

with the boundary conditions 
a,$, + 6 x; nu + Q,,nz = Pxe @YZ) (1.4) 

on that part of the surface S, where the external loadings pox, pvo, pso ape given ; 

nxv ny, nz are vector components of the external normal to the body surface in the 

undeformed state, and also with the boundary conditions 

u0 = ii” , ““Zv”, up=$ (1.5) 

on that part of the surface A’s where the initial displacements ii’, V”, #’ are given. 
We define a new equilibrium position infinitely close to the initial one by the dis- 

placements u I u0 ) au’ + asu”, tj = 4 $ av’+aav”, w = w’+aw’ -I- a%0 ” (1.6) 

Here I,‘, v’, w’ and u”, v”, W” are considered finite functions of the x, y/, z coordi- 
nates, and the parameter CL IS an infinitesimal independent of the coordinates. 

We calculate the strain components in the new deflected equilibrium position as an 
expansion in the parameter a to u2 accuracy, inclusively 

e XX = E; + UE;. + U2Ex;, %!I = %a a -I- aE,i -?- a2E,i (WI (1.7) 
Here 

E ’ 
au' , nlLe ad 

XT =x’ E,,x=i,!lf~ (xyz, uvw) (1.8) 

E” xx (X?/Z, UVU’) 

” au* avv au* ad ad ad 
%I =- ay+3F+Z~+A~+E$ (1.9) 

Components with factors of the type au“ I a:c, au’ I az etc., which are very small as 
compared to unity, are omitted in the calculation of e’ and 8” . This corresponds to the 
assumption made earlier that the initial stress-strain state of the body is described by 
linear elasticity theory [2]. 

In the new equilibrium position the stresses are also represented as an expansion in the 
parameter cc 

DJ,, = GXXO + cccr‘,, + &J”XT, ory = cr’*.!,O +- aa’x,, -t- u%“ru (1.10) 
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Following Novozhilov [2]. we consider the quantities e’ and a” to be connected to 6’ 
and o”. just as o” is connected to a“, i. e. we consider a’ and a” to be expressed in terms 

of o’ and o” by utilization of dependences completely analogous to Hooke’s law (1.2). 

2. The total potential energy of the considered linearly elastic body loaded by poten- 
tial forces, is determined by Expression 

1 
s 2 F=- 

sss 
[bx,e,,+...+~~xyery+...ldv- 

- 
sss 

[ F,u + Fvv _I- Fp] dV - 
ss 

“[P.JJ + Py” + PzWl dS (2.1) 

Limiting ourselves to the second degree in the parameter a, we represent the total 
potential energy for the deflected equilibrium position as 

3 = 30 + a3’ + c&W’ (2.2) 

where the term 3’.is the total energy of the initial unperturbed equilibrium state. The 
term a3’ is the first special variation in this total energy when the possible displace- 
ments coincide with the actual displacements during bifurcation 133. The term oa 3” 

is correspondingly proportional to the second special variation. Since the initial state 
is in equilibrium, the first variation in the energy is zero. and therefore 3’ = 0. 

Upon passage to the deflected equilibrium position, the increment in the total ener- 

gy is A3 = 3 _ 3’ = $3” (2.3) 

The condition 
A3 = 3” = 0 (2.4) 

corresponds to the neutral equilibrium condition, i. e. buckling [4 and 51. 
According to (1.6), (1,7), (1.10). we represent the expression for 9” as 

3” = u, + U? + l-l (2.5) 

u&- SSSL a;e,__ + CT&E& + . . .I dV (2.6) 

1 i 
Up7 

ISS 
[aze$ + a&i + . . . + ~2~: + ariexz f . . .I dV (2.7) 

la=- 
sss 

.[ Fxou” + Fyov” + F,W] dv - SS [pxoua + puov” -b P~~v”I dS (2.8) 

Using the Hooke’s law (1.2). and analogous dependencies connectingla’and e”, the 
expression for i& can be written thus: 

ua = sss [aduG + aXieX; + . . . I dV (2.9) 

*By using (2.9) and (1.9). components in which the displacements u”, u”, W” enter 
can be extracted from the total expression (2.5) for 3”. Then 

3” = A, + As (2.10) 

Aa= 
SSSL 

a,. !&+uX;E+z) +. . .]dV- 

-sss 
[ Fzou” + Fy”v” +- Fpw”] dv - 

ss 
IP,‘~ + P~‘v’ t; pzow”l ds (2.11) 

All the remaining members are included in the symbol A,‘. 

It follows from (2.11) that 4s can be considered as a new special variation in the 
total potential energy when the possible displacements are u”, u”, II)“. Hence, Aa = 0 
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for any displacements s”, u”, W” compatible with the constraints. Taking this clrcum- 

stance into account, an energy criterion for neutral equilibrium in the Bryan-Reissner 

form [4 and 53 can be obtained from the condition (2.4) 

(2.12) 

The initial stresses 6’ and the bifurcational displacements u’, d, w’ enter into this 
criterion, but the additional quadratic displacements u”, u”, lo” do not. In this con- 
nection it is interesting to note that Bryan himself had obtained an energy criterion of 
plate stability in the form (2.12) by at once putting the quadratic displacements in the 

plane of the plate equal to zero [4]. Not considering this deduction valid, Reissner intro- 
duced these displacements into the considerations, but in the long run he again arrived 

at the Bryan result. The reason for this agreement was not completely clear to Reissner; 
thus he writes:“It is very strange that the correct final result has been obtained in the 

Bryan deduction” [5]. 

3. To obtain an energy criterion for buckling which does not require the determina- 
tion of the initial stresses and strains, we transform (2.5) differently. Since As = 0 for 

arbitrary displacements u”, Y”, 10” compatible with the constraints, then any additional 

conditions can be imposed on these displacements in transforming the expression foti3”; 

we make use of this circumstance. 
According to (2.5) - (2.8). the initial stresses: o” enter into 3” only in terms of(2.7) 

for 4. Utilizing the accepted Hooke’s law dependence between the stresses and strains, 
the expression for Us can be reduced either to (2.9). or to 

(3.1) 

Taking account of (1.1) for I?, we obtain 
> 

u, = 
SSSL 

6 ++s.$$ +g)+...]d” = ax 

Now integrating the expression for Us by parts, we fmd 
I 

(3.2) 

lJa=- u” 
SSSL C >+ %+%)+...]G’+ s~_~~=~Y.+*;Y”+~~~O]d~~B 

. 

PX -s,&+Q;,n”+a~& (~Y4 (3.4) 

Now let us deal with the displacements IL”, Y”, ID” in such a way that the triple 
integral, and the double integral on the part of the surface Sr, where the external load- 

ings PP, PVol Pro are given would vanish. To do this it is sufficient to demand com- 
pliance within the volume of the body with Eq. 

as” au” -au- 
-g+-$+$Lo PY 4 (3.5) 

and on the part of the surface ,s, with the conditions 

PX ” = 6, py” = 9, -pz” = 0 (3.6) 

The following boundary conditions (so that u*, Y”, W” would be compatible with the 
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constraints) 
u ,, = 0, 0” S=Z 0, 11)” =a IJ (3.7) 

should be satisfied on the part of the surface S I), 
%” are given. 

where the initial displacements ?,i”, 

Under these conditions we obtain from (3.2) 

ua = ss [p$’ + puwio + p,+] dS 

h 
(3.8) 

Now the energy criterion of neutral equilibrium (2.4) becomes 

ul + ’ IS 
81 

[pxGo + pu”2 + pzDrJ”] dS - 5 5 [P,~u" + P~'v" -I- Pzo'""l dS - 
St 

- sss [ Fxouc + Fvov’ + Fzow” j dV = 0 (3.9) 

Condition (3.9) will be the desired form of the buckling energy criterion which does 
not contain initial stresses. The quantity U, is defined by (2.6), and depends only on the 
displacements u’, u’, w’. The remaining members are expressed in terms of the given 
loadings pro, pyo, p,“and F,“, Fvo, F,*, and the initial displacements U”, -P, W” given on 
the part of the surface S, .The quadratic displacements u”, v”, w” in condition (3.9), 
and the quadratic surface loads px”, py”, pt” are expressed in terms of the displace- 

ments u’, v’, w’ and are also independent of the initial stresses and strains. 
Those conditions which are imposed on the quadratic displacements u”, v”, w” in 

order to eliminate the initial stresses from the expression for 3” can be treated as fol- 
lows. Compliance with (3.5) means that the additional quadratic displacements! u”, v”, 
W” have been selected such that the quadratic stresses o” which originate during buck- 

ling, would be self-equalized. The boundary conditions (3.6) mean that the additional 
quadratic loadings px” pv” pt” would be zero on that part of the surface where the 

external surface potential loadings pxo, pay, poz are given. Finally, the quadratic load- 
ings in condition (3.9). which are on the part of the surface Sz are additional quadratic 

reactions to the constraints originating during buckling. 

4, The elastic stability criterion (3.9) formulated above permits the utilization of 
direct calculus of variations methods in solving specific problems. Taking account of 
the appropriate boundary conditions, we can give the displacement functions u’, v’, W’ 
governing the bifurcation in the form of linear aggregates 

U’=~aiUj’(Z, Y, ‘): D'=~6jV'(2, y, Z), W'=~CjW*~(2, y, Z) (4.1) 

in the approximate solutions. 
Expressing a” in terms of a”, utilizing (1.9). and solving (3.5) for the quadratic dis- 

placements u;‘, v”, w”, we obtain a system of linear differential equations whose right 
sides will depend on the selected functions u’, v’, w’. Solving this system exactly or 

approximately, we find if we take account of boundary conditions (3.6) and (3.7) 

U”=~:iUi”(Z, y, z), V~==-~BiUi”(Z, y, z), I&~CiWI~(“’ y, z) (4.2) 

where the coefficients Ai, Bi Ci. depend on the parameters Qi, Bi, ci. Now, besides the 
elastic system parameters, only the magnitudes of the external loadings and the coeffi- 
cients “1, es, cf enter into the stability criterion (3.9) ; the critical values of the loadings 
can be determined by utilizing the known Timoshenko procedure. 
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The main difference between the proposed modification of the energy method and the 
customary method is that the determination of the initial state of stress of the system is 
replaced by the determination of the additional quadratic displacements u”, u”, u)“. 
It is important that this auxiliary problem to determine u”, Y”, w”, be solved independ- 
ently of the specific loading of the elastic system ; hence, the proposed means of solution 

may turn out to be simpler than the customary means in the case of the complex initial 
state of stress. Moreover, once having determined the displacements IL”, Y”, w” for a 
given system under given constraint conditions, these displacements may then be utilized 

for other modifications of the system loading. 
The customary means of solution is associated with the need to solve the problem of 

determining the initial state of stress each time. 
Examples of utilization of the proposed modification of the energy method for stability 

problems of a rectangular plate loaded by concentrated forces are given in [l]. 

The condition 15(3”)=0 from @ - 41 can also be utilized in place of the neutral 
equilibrium condition A3 = 0 applied above with the Timoshenko minimization pro- 
cedure. Both these methods of solution are generally equivalent [S] ; following the trans- 
formations presented above, determination of the initial state of stress of an elastic sys- 

tem can be avoided in either. 

In conclusion, let us emphasize once again that the energy stabiIity criterion (3.9). 
which does not contain initial stresses, is valid when the initial stress-strain state can be 
described accurately enough by equations of linear elasticity theory. 
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